Thomas Alva Edison, Inventor

How are you related to Thomas Alva Edison, Inventor?

Connect to the World Family Tree to find out

Share your family tree and photos with the people you know and love

  • Build your family tree online
  • Share photos and videos
  • Smart Matching™ technology
  • Free!

Thomas Alva Edison, Inventor

Birthdate:
Birthplace: Milan, Erie County, Ohio, United States
Death: October 18, 1931 (84)
Llewellyn Park, West Orange, Essex County, New Jersey, United States (complications of diabetes)
Place of Burial: West Orange, Essex County, New Jersey
Immediate Family:

Son of Samuel Ogden Edison, II and Nancy Edison
Husband of Mary Jane Edison (Stillwell) and Mina Edison (Miller)
Father of Marion "Dot" Estelle Oeser; Thomas "Dash" Alva Edison, Jr.; William Leslie Edison; Madeleine Sloane (Edison); Charles Edison and 1 other
Brother of Marion Wallace Page; William Pitt Edison; Harriet Ann Bailey; Carlisle Snow Edison; Samuel Ogden Edison and 4 others
Half brother of Marietta Kuhn; Maude M Johnston; Mabel Clare Edison and Charles Edison

Occupation: Inventor, businessman
WikiPedia-EN: https://en.wikipedia.org/wiki/Thomas_Edison
Managed by: Geoffrey David Trowbridge
Last Updated:

About Thomas Alva Edison, Inventor

Sources:

United States Census, 1860

Alvah Edison in entry for Samuel Edison, 1860.

United States Census, 1880

Thomas A Edison, East New Brunswick, Middlesex, New Jersey, United States; citing enumeration district ED 132, sheet 279C, NARA microfilm publication T9 (Washington D.C.: National Archives and Records Administration, n.d.), roll 0790; FHL microfilm 1,25,790.]

United States Census, 1900

Thomas Edison, District 2 West Orange town, Essex, New Jersey, United States; citing sheet 20A, family 379, NARA microfilm publication T623 (Washington, D.C.: National Archives and Records Administration, n.d.); FHL microfilm 1,240,968.

New Jersey State Census, 1905

Thomas A Edison, , Essex, New Jersey, United States; citing p. 41, line 62, Department of State, Trenton; FHL microfilm 1,688,602.

United States Census, 1910

Thomas A Edison, West Orange Ward 2, Essex, New Jersey, United States; citing enumeration district (ED) ED 225, sheet 22A, NARA microfilm publication T624 (Washington, D.C.: National Archives and Records Administration, n.d.); FHL microfilm 1,374,897.

United States Census, 1920

Thomas A Edison, West Orange Ward 2, Essex, New Jersey, United States; citing sheet 1A, NARA microfilm publication T625 (Washington D.C.: National Archives and Records Administration, n.d.); FHL microfilm 1,821,038.

Landmark

Thomas Edison ACS Landmark

Biographical Summary:

Thomas Alva Edison (February 11, 1847 – October 18, 1931) was an American inventor, scientist, and businessman who developed many devices that greatly influenced life around the world, including the phonograph, the motion picture camera, and a long-lasting, practical electric light bulb, and the General Electric Company.

From the 1880 federal census, Thomas A. Edison lived in East New Brunswick, Middlesex County, New Jersey, with his wife and children. The family at the time consisted of:

  • Head Thomas A. Edison 32
  • Wife Mary Edison 24
  • Daughter Marion E. Edison 7
  • Son Thomas E. Edison 5
  • Son William L. Edison 1 Dubbed "The Wizard of Menlo Park" (now Edison, New Jersey) by a newspaper reporter, he was one of the first inventors to apply the principles of mass production and large teamwork to the process of invention, and therefore is often credited with the creation of the first industrial research laboratory.

Edison is the third most prolific inventor in history, holding 1,093 US patents in his name, as well as many patents in the United Kingdom, France, and Germany. He is credited with numerous inventions that contributed to mass communication and, in particular, telecommunications. These included a stock ticker, a mechanical vote recorder, a battery for an electric car, electrical power, recorded music and motion pictures. His advanced work in these fields was an outgrowth of his early career as a telegraph operator. Edison originated the concept and implementation of electric-power generation and distribution to homes, businesses, and factories – a crucial development in the modern industrialized world. His first power station was on Manhattan Island, New York.

Early life

Thomas Edison was born in Milan, Ohio, and grew up in Port Huron, Michigan. He was the seventh and last child of Samuel Ogden Edison, Jr. (1804–96, born in Marshalltown, Nova Scotia, Canada) and Nancy Matthews Elliott (1810–1871, born in Chenango County, New York). His father had to escape from Canada because he took part in the unsuccessful Mackenzie Rebellion of 1837. Edison considered himself to be of Dutch ancestry.

In school, the young Edison's mind often wandered, and his teacher, the Reverend Engle, was overheard calling him "addled". This ended Edison's three months of official schooling. Edison recalled later, "My mother was the making of me. She was so true, so sure of me; and I felt I had something to live for, someone I must not disappoint." His mother homeschooled him. Much of his education came from reading R.G. Parker's School of Natural Philosophy and The Cooper Union.

Edison developed hearing problems at an early age. The cause of his deafness has been attributed to a bout of scarlet fever during childhood and recurring untreated middle-ear infections. Around the middle of his career Edison attributed the hearing impairment to being struck on the ears by a train conductor when his chemical laboratory in a boxcar caught fire and he was thrown off the train in Smiths Creek, Michigan, along with his apparatus and chemicals. In his later years he modified the story to say the injury occurred when the conductor, in helping him onto a moving train, lifted him by the ears.

Edison's family was forced to move to Port Huron, Michigan, when the railroad bypassed Milan in 1854, but his life there was bittersweet. He sold candy and newspapers on trains running from Port Huron to Detroit, and he sold vegetables to supplement his income. This began Edison's long streak of entrepreneurial ventures as he discovered his talents as a businessman. These talents eventually led him to found 14 companies, including General Electric, which is still in existence as one of the largest publicly traded companies in the world.

Edison became a telegraph operator after he saved three-year-old Jimmie MacKenzie from being struck by a runaway train. Jimmie's father, station agent J.U. MacKenzie of Mount Clemens, Michigan, was so grateful that he trained Edison as a telegraph operator. Edison's first telegraphy job away from Port Huron was at Stratford Junction, Ontario, on the Grand Trunk Railway. In 1866, at the age of 19, Thomas Edison moved to Louisville, Kentucky, where, as an employee of Western Union, he worked the Associated Press bureau news wire. Edison requested the night shift, which allowed him plenty of time to spend at his two favorite pastimes—reading and experimenting. Eventually, the latter pre-occupation cost him his job. One night in 1867, he was working with a lead-acid battery when he spilled sulfuric acid onto the floor. It ran between the floorboards and onto his boss's desk below. The next morning Edison was fired.

One of his mentors during those early years was a fellow telegrapher and inventor named Franklin Leonard Pope, who allowed the impoverished youth to live and work in the basement of his Elizabeth, New Jersey home. Some of Edison's earliest inventions were related to telegraphy, including a stock ticker. His first patent was for the electric vote recorder, (U. S. Patent 90,646), which was granted on June 1, 1869.

Marriages and children

On December 25, 1871, Edison married 16-year-old Mary Stilwell, whom he had met two months earlier as she was an employee at one of his shops. They had three children:

  • Marion Estelle Edison (1873–1965), nicknamed "Dot"
  • Thomas Alva Edison, Jr. (1876–1935), nicknamed "Dash"
  • William Leslie Edison (1878–1937) Inventor, graduate of the Sheffield Scientific School at Yale, 1900.

Mary Edison died on August 9, 1884, possibly from a brain tumor.

On February 24, 1886, at the age of thirty nine, Edison married 20-year-old Mina Miller in Akron, Ohio.[18] She was the daughter of inventor Lewis Miller, co-founder of the Chautauqua Institution and a benefactor of Methodist charities. They also had three children:

  • Madeleine Edison (1888–1979), who married John Eyre Sloane.
  • Charles Edison (1890–1969), who took over the company upon his father's death and who later was elected Governor of New Jersey. He also took charge of his father's experimental laboratories in West Orange.
  • Theodore Edison (1898–1992), (MIT Physics 1923), had over 80 patents to his credit.

Mina outlived Thomas Edison, dying on August 24, 1947.

Beginning his career
Thomas Edison began his career as an inventor in Newark, New Jersey, with the automatic repeater and his other improved telegraphic devices, but the invention which first gained him notice was the phonograph in 1877. This accomplishment was so unexpected by the public at large as to appear almost magical. Edison became known as "The Wizard of Menlo Park," New Jersey. His first phonograph recorded on tinfoil around a grooved cylinder, but had poor sound quality and the recordings could only be played a few times. In the 1880s, a redesigned model using wax-coated cardboard cylinders was produced by Alexander Graham Bell, Chichester Bell, and Charles Tainter. This was one reason that Thomas Edison continued work on his own "Perfected Phonograph." Menlo Park (1876–1881)

Edison's major innovation was the first industrial research lab, which was built in Menlo Park, New Jersey. It was built with the funds from the sale of Edison's quadruplex telegraph. After his demonstration of the telegraph, Edison was not sure that his original plan to sell it for $4,000 to $5,000 was right, so he asked Western Union to make a bid. He was surprised to hear them offer $10,000,[citation needed] which he gratefully accepted. The quadruplex telegraph was Edison's first big financial success, and Menlo Park became the first institution set up with the specific purpose of producing constant technological innovation and improvement. Edison was legally attributed with most of the inventions produced there, though many employees carried out research and development under his direction. His staff was generally told to carry out his directions in conducting research, and he drove them hard to produce results.

William J. Hammer, a consulting electrical engineer, began his duties as a laboratory assistant to Edison in December 1879. He assisted in experiments on the telephone, phonograph, electric railway, iron ore separator, electric lighting, and other developing inventions. However, Hammer worked primarily on the incandescent electric lamp and was put in charge of tests and records on that device. In 1880, he was appointed chief engineer of the Edison Lamp Works. In his first year, the plant under General Manager Francis Robbins Upton turned out 50,000 lamps. According to Edison, Hammer was "a pioneer of incandescent electric lighting".

Nearly all of Edison's patents were utility patents, which were protected for a 17-year period and included inventions or processes that are electrical, mechanical, or chemical in nature. About a dozen were design patents, which protect an ornamental design for up to a 14-year period. As in most patents, the inventions he described were improvements over prior art. The phonograph patent, in contrast, was unprecedented as describing the first device to record and reproduce sounds. Edison did not invent the first electric light bulb, but instead invented the first commercially practical incandescent light.[citation needed] Many earlier inventors had previously devised incandescent lamps including Henry Woodward, and Mathew Evans. Others who developed early and not commercially practical incandescent electric lamps included Humphry Davy, James Bowman Lindsay, Moses G. Farmer, William E. Sawyer, Joseph Swan and Heinrich Göbel. Some of these early bulbs had such flaws as an extremely short life, high expense to produce, and high electric current drawn, making them difficult to apply on a large scale commercially. In 1878, Edison applied the term filament to the element of glowing wire carrying the current, although the English inventor Joseph Swan had used the term prior to this. Swan developed an incandescent light with a long lasting filament at about the same time as Edison, as Swan's earlier bulbs lacked the high resistance needed to be an effective part of an electrical utility. Edison and his co-workers set about the task of creating longer-lasting bulbs. In Britain, Joseph Swan had been able to obtain a patent on the incandescent lamp because although he had been making successful lamps some time before Edison was tardy in applying for patents so application was submitted by Edison but failed due to an oversight in the drafting of Edison's patent application. Unable to raise the required capital in Britain because of this, Edison was forced to enter into a joint venture with Swan (known as Ediswan). Swan acknowledged that Edison had anticipated him, saying "Edison is entitled to more than I ... he has seen further into this subject, vastly than I, and foreseen and provided for details that I did not comprehend until I saw his system". By 1879, Edison had produced a new concept: a high resistance lamp in a very high vacuum, which would burn for hundreds of hours. While the earlier inventors had produced electric lighting in laboratory conditions, dating back to a demonstration of a glowing wire by Alessandro Volta in 1800, Edison concentrated on commercial application, and was able to sell the concept to homes and businesses by mass-producing relatively long-lasting light bulbs and creating a complete system for the generation and distribution of electricity.

In just over a decade Edison's Menlo Park laboratory had expanded to occupy two city blocks. Edison said he wanted the lab to have "a stock of almost every conceivable material". A newspaper article printed in 1887 reveals the seriousness of his claim, stating the lab contained "eight thousand kinds of chemicals, every kind of screw made, every size of needle, every kind of cord or wire, hair of humans, horses, hogs, cows, rabbits, goats, minx, camels ... silk in every texture, cocoons, various kinds of hoofs, shark's teeth, deer horns, tortoise shell ... cork, resin, varnish and oil, ostrich feathers, a peacock's tail, jet, amber, rubber, all ores ..." and the list goes on.

Over his desk, Edison displayed a placard with Sir Joshua Reynolds' famous quotation: "There is no expedient to which a man will not resort to avoid the real labor of thinking." This slogan was reputedly posted at several other locations throughout the facility.

With Menlo Park, Edison had created the first industrial laboratory concerned with creating knowledge and then controlling its application.

Carbon telephone transmitter

In 1877–78, Edison invented and developed the carbon microphone used in all telephones along with the Bell receiver until the 1980s. After protracted patent litigation, in 1892 a federal court ruled that Edison—and not Emile Berliner—was the inventor of the carbon microphone. The carbon microphone was also used in radio broadcasting and public address work through the 1920s.

Electric light

Building on the contributions of other developers over the previous three quarters of a century, Edison made significant improvements to the idea of incandescent light, and wound up in the public consciousness as "the inventor" of the lightbulb.

After many experiments with platinum and other metal filaments, Edison returned to a carbon filament. The first successful test was on October 22, 1879; it lasted 40 hours. Edison continued to improve this design and by November 4, 1879, filed for U.S. patent 223,898 (granted on January 27, 1880) for an electric lamp using "a carbon filament or strip coiled and connected to platina contact wires". Although the patent described several ways of creating the carbon filament including "cotton and linen thread, wood splints, papers coiled in various ways", it was not until several months after the patent was granted that Edison and his team discovered a carbonized bamboo filament that could last over 1,200 hours. The idea of using this particular raw material originated from Edison's recalling his examination of a few threads from a bamboo fishing pole while relaxing on the shore of Battle Lake in the present-day state of Wyoming, where he and other members of a scientific team had traveled so that they could clearly observe a total eclipse of the sun on July 29, 1878, from the Continental Divide.

In 1878, Edison formed the Edison Electric Light Company in New York City with several financiers, including J. P. Morgan and the members of the Vanderbilt family. Edison made the first public demonstration of his incandescent light bulb on December 31, 1879, in Menlo Park. It was during this time that he said: "We will make electricity so cheap that only the rich will burn candles."

Lewis Latimer joined the Edison Electric Light Company in 1884. Latimer had received a patent in January 1881 for the "Process of Manufacturing Carbons", an improved method for the production of carbon filaments for lightbulbs. Latimer worked as an engineer, a draftsman and an expert witness in patent litigation on electric lights.

George Westinghouse's company bought Philip Diehl's competing induction lamp patent rights (1882) for $25,000, forcing the holders of the Edison patent to charge a more reasonable rate for the use of the Edison patent rights and lowering the price of the electric lamp.

On October 8, 1883, the US patent office ruled that Edison's patent was based on the work of William Sawyer and was therefore invalid. Litigation continued for nearly six years, until October 6, 1889, when a judge ruled that Edison's electric light improvement claim for "a filament of carbon of high resistance" was valid. To avoid a possible court battle with Joseph Swan, whose British patent had been awarded a year before Edison's, he and Swan formed a joint company called Ediswan to manufacture and market the invention in Britain.

Mahen Theatre in Brno in what is now the Czech Republic, was the first public building in the world to use Edison's electric lamps, with the installation supervised by Edison's assistant in the invention of the lamp, Francis Jehl. In September 2010, a sculpture of three giant light bulbs was erected in Brno, in front of the theatre.

Electric power distribution

Edison patented a system for electricity distribution in 1880, which was essential to capitalize on the invention of the electric lamp. On December 17, 1880, Edison founded the Edison Illuminating Company. The company established the first investor-owned electric utility in 1882 on Pearl Street Station, New York City. It was on September 4, 1882, that Edison switched on his Pearl Street generating station's electrical power distribution system, which provided 110 volts direct current (DC) to 59 customers in lower Manhattan.

Earlier in the year, in January 1882 he had switched on the first steam generating power station at Holborn Viaduct in London. The DC supply system provided electricity supplies to street lamps and several private dwellings within a short distance of the station. On January 19, 1883, the first standardized incandescent electric lighting system employing overhead wires began service in Roselle, New Jersey.

War of currents

Edison's true success, like that of his friend Henry Ford, was in his ability to maximize profits through establishment of mass-production systems and intellectual property rights. George Westinghouse and Edison became adversaries because of Edison's promotion of direct current (DC) for electric power distribution instead of the more easily transmitted alternating current (AC) system invented by Nikola Tesla and promoted by Westinghouse. Unlike DC, AC could be stepped up to very high voltages with transformers, sent over thinner and cheaper wires, and stepped down again at the destination for distribution to users.

In 1887 there were 121 Edison power stations in the United States delivering DC electricity to customers. When the limitations of DC were discussed by the public, Edison launched a propaganda campaign to convince people that AC was far too dangerous to use. The problem with DC was that the power plants could economically deliver DC electricity only to customers within about one and a half miles (about 2.4 km) from the generating station, so that it was suitable only for central business districts. When George Westinghouse suggested using high-voltage AC instead, as it could carry electricity hundreds of miles with marginal loss of power, Edison waged a "War of Currents" to prevent AC from being adopted.

The war against AC led him to become involved in the development and promotion of the electric chair (using AC) as an attempt to portray AC to have greater lethal potential than DC. Edison went on to carry out a brief but intense campaign to ban the use of AC or to limit the allowable voltage for safety purposes. As part of this campaign, Edison's employees publicly electrocuted animals to demonstrate the dangers of AC;[39][40] alternating electric currents are slightly more dangerous in that frequencies near 60 Hz have a markedly greater potential for inducing fatal "cardiac fibrillation" than do direct currents.[41] On one of the more notable occasions, in 1903, Edison's workers electrocuted Topsy the elephant at Luna Park, near Coney Island, after she had killed several men and her owners wanted her put to death. His company filmed the electrocution.

AC replaced DC in most instances of generation and power distribution, enormously extending the range and improving the efficiency of power distribution. Though widespread use of DC ultimately lost favor for distribution, it exists today primarily in long-distance high-voltage direct current (HVDC) transmission systems. Low voltage DC distribution continued to be used in high-density downtown areas for many years but was eventually replaced by AC low-voltage network distribution in many of them. DC had the advantage that large battery banks could maintain continuous power through brief interruptions of the electric supply from generators and the transmission system. Utilities such as Commonwealth Edison in Chicago had rotary converters or motor-generator sets, which could change DC to AC and AC to various frequencies in the early to mid-20th century. Utilities supplied rectifiers to convert the low voltage AC to DC for such DC loads as elevators, fans and pumps. There were still 1,600 DC customers in downtown New York City as of 2005, and service was finally discontinued only on November 14, 2007. Most subway systems still are powered by direct current.

Fluoroscopy

Edison is credited with designing and producing the first commercially available fluoroscope, a machine that uses X-rays to take radiographs. Until Edison discovered that calcium tungstate fluoroscopy screens produced brighter images than the barium platinocyanide screens originally used by Wilhelm Röntgen, the technology was capable of producing only very faint images. The fundamental design of Edison's fluoroscope is still in use today, despite the fact that Edison himself abandoned the project after nearly losing his own eyesight and seriously injuring his assistant, Clarence Dally. Dally had made himself an enthusiastic human guinea pig for the fluoroscopy project and in the process been exposed to a poisonous dose of radiation. He later died of injuries related to the exposure. In 1903, a shaken Edison said "Don't talk to me about X-rays, I am afraid of them."

Work relations

Frank J. Sprague, a competent mathematician and former naval officer, was recruited by Edward H. Johnson and joined the Edison organization in 1883. One of Sprague's significant contributions to the Edison Laboratory at Menlo Park was to expand Edison's mathematical methods. Despite the common belief that Edison did not use mathematics, analysis of his notebooks reveal that he was an astute user of mathematical analysis conducted by his assistants such as Francis Robbins Upton, for example, determining the critical parameters of his electric lighting system including lamp resistance by a sophisticated analysis of Ohm's Law, Joule's Law and economics.

Another of Edison's assistants was Nikola Tesla. Tesla claimed that Edison promised him $50,000 if he succeeded in making improvements to his DC generation plants. Several months later, when Tesla had finished the work and asked to be paid, he said that Edison replied, "When you become a full-fledged American you will appreciate an American joke." Tesla immediately resigned. With Tesla's salary of $18 per week, the payment would have amounted to over 53 years' pay and the amount was equal to the initial capital of the company. Tesla resigned when he was refused a raise to $25 per week. Although Tesla accepted an Edison Medal later in life, this and other negative series of events concerning Edison remained with Tesla. The day after Edison died, the New York Times contained extensive coverage of Edison's life, with the only negative opinion coming from Tesla who was quoted as saying:

He had no hobby, cared for no sort of amusement of any kind and lived in utter disregard of the most elementary rules of hygiene. [...] His method was inefficient in the extreme, for an immense ground had to be covered to get anything at all unless blind chance intervened and, at first, I was almost a sorry witness of his doings, knowing that just a little theory and calculation would have saved him 90% of the labour. But he had a veritable contempt for book learning and mathematical knowledge, trusting himself entirely to his inventor's instinct and practical American sense. —Nikola Tesla

One of Edison's famous quotations regarding his attempts to make the light globe suggest that perhaps Tesla was right about Edison's methods of working: "If I find 10,000 ways something won't work, I haven't failed. I am not discouraged, because every wrong attempt discarded is another step forward."

When Edison was a very old man and close to death, he said, in looking back, that the biggest mistake he had made was that he never respected Tesla or his work.

There were 28 men recognized as Edison Pioneers.

Media inventions

The key to Edison's fortunes was telegraphy. With knowledge gained from years of working as a telegraph operator, he learned the basics of electricity. This allowed him to make his early fortune with the stock ticker, the first electricity-based broadcast system. Edison patented the sound recording and reproducing phonograph in 1878. Edison was also granted a patent for the motion picture camera or "Kinetograph". He did the electromechanical design, while his employee W.K.L. Dickson, a photographer, worked on the photographic and optical development. Much of the credit for the invention belongs to Dickson. In 1891, Thomas Edison built a Kinetoscope, or peep-hole viewer. This device was installed in penny arcades, where people could watch short, simple films. The kinetograph and kinetoscope were both first publicly exhibited May 20, 1891.

On August 9, 1892, Edison received a patent for a two-way telegraph. In April 1896, Thomas Armat's Vitascope, manufactured by the Edison factory and marketed in Edison's name, was used to project motion pictures in public screenings in New York City. Later he exhibited motion pictures with voice soundtrack on cylinder recordings, mechanically synchronized with the film.

The June 1894 Leonard–Cushing bout. Each of the six one-minute rounds recorded by the Kinetoscope was made available to exhibitors for $22.50. Customers who watched the final round saw Leonard score a knockdown.

Officially the kinetoscope entered Europe when the rich American Businessman Irving T. Bush (1869–1948) bought from the Continental Commerce Company of Franck Z. Maguire and Joseph D. Bachus a dozen machines. Bush placed from October 17, 1894, the first kinetoscopes in London. At the same time the French company Kinétoscope Edison Michel et Alexis Werner bought these machines for the market in France. In the last three months of 1894 The Continental Commerce Company sold hundreds of kinetoscopes in Europe (i.e. the Netherlands and Italy). In Germany and in Austria-Hungary the kinetoscope was introduced by the Deutsche-österreichische-Edison-Kinetoscop Gesellschaft, founded by the Ludwig Stollwerck[53] of the Schokoladen-Süsswarenfabrik Stollwerck & Co of Cologne. The first kinetoscopes arrived in Belgium at the Fairs in early 1895. The Edison's Kinétoscope Français, a Belgian company, was founded in Brussels on January 15, 1895, with the rights to sell the kinetoscopes in Monaco, France and the French colonies. The main investors in this company were Belgian industrialists. On May 14, 1895, the Edison's Kinétoscope Belge was founded in Brussels. The businessman Ladislas-Victor Lewitzki, living in London but active in Belgium and France, took the initiative in starting this business. He had contacts with Leon Gaumont and the American Mutoscope and Biograph Co. In 1898 he also became a shareholder of the Biograph and Mutoscope Company for France.

In 1901, he visited the Sudbury area in Ontario, Canada, as a mining prospector, and is credited with the original discovery of the Falconbridge ore body. His attempts to actually mine the ore body were not successful, however, and he abandoned his mining claim in 1903. A street in Falconbridge, as well as the Edison Building, which served as the head office of Falconbridge Mines, are named for him.

In 1902, agents of Thomas Edison bribed a theater owner in London for a copy of A Trip to the Moon by Georges Méliès. Edison then made hundreds of copies and showed them in New York City. Méliès received no compensation. He was counting on taking the film to the US and recapture its huge cost by showing it throughout the country when he realized it had already been shown there by Edison. This effectively bankrupted Méliès. Other exhibitors similarly routinely copied and exhibited each others films. To better protect the copyrights on his films, Edison deposited prints of them on long strips of photographic paper with the U.S. copyright office. Many of these paper prints survived longer and in better condition than the actual films of that era.

Edison's favorite movie was The Birth of a Nation. He thought that talkies had "spoiled everything" for him. "There isn't any good acting on the screen. They concentrate on the voice now and have forgotten how to act. I can sense it more than you because I am deaf."[59] His favorite stars were Mary Pickford and Clara Bow.

In 1908, Edison started the Motion Picture Patents Company, which was a conglomerate of nine major film studios (commonly known as the Edison Trust). Thomas Edison was the first honorary fellow of the Acoustical Society of America, which was founded in 1929.

Edison moved from Menlo Park after the death of Mary Stilwell and purchased a home known as "Glenmont" in 1886 as a wedding gift for Mina in Llewellyn Park in West Orange, New Jersey. In 1885, Thomas Edison bought property in Fort Myers, Florida, and built what was later called Seminole Lodge as a winter retreat. Edison and his wife Mina spent many winters in Fort Myers where they recreated and Edison tried to find a domestic source of natural rubber.

Henry Ford, the automobile magnate, later lived a few hundred feet away from Edison at his winter retreat in Fort Myers, Florida. Edison even contributed technology to the automobile. They were friends until Edison's death.

In 1928, Edison joined the Fort Myers Civitan Club. He believed strongly in the organization, writing that "The Civitan Club is doing things —big things— for the community, state, and nation, and I certainly consider it an honor to be numbered in its ranks." He was an active member in the club until his death, sometimes bringing Henry Ford to the club's meetings.

The final years

Edison was active in business right up to the end. Just months before his death in 1931, the Lackawanna Railroad implemented electric trains in suburban service from Hoboken to Gladstone, Montclair and Dover in New Jersey. Transmission was by means of an overhead catenary system, with the entire project under Edison's guidance. To the surprise of many, he was at the throttle of the very first MU (Multiple-Unit) train to depart Lackawanna Terminal in Hoboken, driving the train all the way to Dover. As another tribute to his lasting legacy, the same fleet of cars Edison deployed on the Lackawanna in 1931 served commuters until their retirement in 1984, when some of them were purchased by the Berkshire Scenic Railway Museum in Lenox, Massachusetts. A special plaque commemorating the joint achievement of both the railway and Edison can be seen today in the waiting room of Lackawanna Terminal in Hoboken, presently operated by New Jersey Transit.

Edison was said to have been influenced by a popular fad diet in his last few years; "the only liquid he consumed was a pint of milk every three hours". He is reported to have believed this diet would restore his health. However, this tale is doubtful. In 1930, the year before Edison died, Mina said in an interview about him that "Correct eating is one of his greatest hobbies." She also said that during one of his periodic "great scientific adventures", Edison would be up at 7:00, have breakfast at 8:00, and be rarely home for lunch or dinner, implying that he continued to have all three.

Edison became the owner of his Milan, Ohio, birthplace in 1906. On his last visit, in 1923, he was shocked to find his old home still lit by lamps and candles.

Thomas Edison died of complications of diabetes on October 18, 1931, in his home, "Glenmont" in Llewellyn Park in West Orange, New Jersey, which he had purchased in 1886 as a wedding gift for Mina. He is buried behind the home.

Edison's last breath is reportedly contained in a test tube at the Henry Ford Museum. Ford reportedly convinced Charles Edison to seal a test tube of air in the inventor's room shortly after his death, as a memento. A plaster death mask was also made.

Historian Paul Israel has characterized Edison as a "freethinker". Edison was heavily influenced by Thomas Paine's The Age of Reason.[30] Edison defended Paine's "scientific deism", saying, "He has been called an atheist, but atheist he was not. Paine believed in a supreme intelligence, as representing the idea which other men often express by the name of deity." In an October 2, 1910, interview in the New York Times Magazine, Edison stated:

Nature is what we know. We do not know the gods of religions. And nature is not kind, or merciful, or loving. If God made me — the fabled God of the three qualities of which I spoke: mercy, kindness, love — He also made the fish I catch and eat. And where do His mercy, kindness, and love for that fish come in? No; nature made us — nature did it all — not the gods of the religions.

Edison was called an atheist for those remarks, and although he did not allow himself to be drawn into the controversy publicly, he clarified himself in a private letter: "You have misunderstood the whole article, because you jumped to the conclusion that it denies the existence of God. There is no such denial, what you call God I call Nature, the Supreme intelligence that rules matter. All the article states is that it is doubtful in my opinion if our intelligence or soul or whatever one may call it lives hereafter as an entity or disperses back again from whence it came, scattered amongst the cells of which we are made."

Nonviolence was key to Edison's moral views, and when asked to serve as a naval consultant for World War I, he specified he would work only on defensive weapons and later noted, "I am proud of the fact that I never invented weapons to kill." Edison's philosophy of nonviolence extended to animals as well, about which he stated: "Nonviolence leads to the highest ethics, which is the goal of all evolution. Until we stop harming all other living beings, we are still savages." However, he is also notorious for having electrocuted a number of dogs in 1888, both by direct and alternating current, in an attempt to argue that the former (which he had a vested business interest in promoting) was safer than the latter (favored by his rival George Westinghouse). Edison's success in promoting direct current as less lethal also led to alternating current being used in the electric chair adopted by New York in 1889 as a supposedly humane execution method; because Westinghouse was angered by the decision, he funded Eighth Amendment-based appeals for inmates set to die in the electric chair, ultimately resulting in Edison providing the generators which powered early electrocutions and testifying successfully on behalf of the state that electrocution was a painless method of execution.

Odds & Ends

An interesting historical tidbit, into the Loyalist history of Thomas Alva Edison Cumberland County News Article

There is also a legend in Mexico that "Tõmas" Alva was born in Lagos de Moreno, then taken to the U.S. as a toddler and adopted into the Edison family. The legend, true or not, testifies, at least, to the international veneration that this most prolific inventor enjoys, even today. Who wouldn't want to claim Edison as a native son? FECHA.org Edison article


https://timenote.info/lv/Tomass-Edisons-11.2.1847

view all 15

Thomas Alva Edison, Inventor's Timeline

1847
February 11, 1847
Milan, Erie County, Ohio, United States
1850
1850
Age 2
Milan, Erie, Ohio, United States
1872
February 18, 1872
Menlo Park, Middlesex County, New Jersey, United States
1873
1873
Age 25
New York City, New York, United States
1876
January 10, 1876
Newark, New Jersey, United States
1878
October 3, 1878
Menlo Park, Middlesex County, New Jersey, United States
1888
May 31, 1888
West Orange, Essex County, NJ, United States
1889
1889
Age 41
New York, United States